Hg/POPs Working Group Updates

Yanxu Zhang
on behalf of all co-chairs
08/24/2021
Contents

• New Hg chemistry
• New Hg isotope model
• Updated Hg0 vegetation uptake
GEOS-Chem Hg chemistry updates

- Hg chemistry updated to include computational and lab results since 2017. Updates include:
 - Hg(0)+OH reaction; Hg(I)+ozone reactions
 - Hg(II) gas-phase photolysis
 - Improved Hg(II) gas-particle partitioning (kinetic process; organic+inorg HgP species)
- Structural updates to mercury_mod
 - Many more tracers than before (several Hg(II) species)
 - Online photolysis with FAST-JX
 - Chemistry solved in KPP
 - Oxidant & aerosol fields from version 12.9 (halogens from Wang et al. 2021)
- Tagged Hg simulation no longer works (chem involves many species now)
- Updated code being ported to version 13 by GCST & Mike Long

V. Shah (Harvard) et al. ES&T 2021
Key results of the Hg chemistry update

- Atmospheric Hg lifetime consistent with Horowitz et al. (2017).
- Small changes in deposition spatial patterns.

- Net Hg0–>HgII oxidation occurs via Br and OH almost equally.
- Ozone is the main second-step oxidant.
- HgII reduction in aqueous phase is faster than in gas phase.
- HgIIX is modeled as HgCl$_2$.

V. Shah (Harvard) et al. ES&T 2021
Mercury Isotope model

- Hg has seven stable isotopes, which has been widely used for source apportionment and processes determination.
- It is challenging to link the observed isotope fractionation data to global Hg cycling.
- Hg isotope signatures in atmosphere
- Process-based isotope fractionations are collected and integrated into the GEOS-Chem model platform.
- The chemical mechanism is implemented from Horowitz et al. (2017) using the Kinetic PreProcessor (KPP).

Method

- Seven Hg isotopes
- Meteorological data (GEOS-FP)
- Anthropogenic emissions
- KPP
- GEOS-Chem
- Horowitz et al. (2017)
- It is the first 3-D model for atmospheric Hg isotopes.
- Hg isotopic inventory of natural, re-emission, and anthropogenic sources are developed.
- We consider all the seven stable isotopes of Hg for Hg(0), Hg(II)_g and Hg(II)_p, which results in a total of 21 advected tracers.

Results

- Our simulated isotope compositions of TGM are broadly comparable with available observations across different global regions.
- Source emissions have great impact on regional isotope composition of TGM.
- Hg(0) uptake by terrestrial surface (e.g. vegetation) and Hg(II) reduction play a key role in changing isotope composition of global TGM.
- Codes available in next couple of versions

Z. Song, Y. Zhang (NJU) ES&T submit soon
Constraining Hg vegetation uptake in GEOS-Chem using available measurements

- Reference GEOS-Chem (v12.8.1) simulation underestimates Hg dry deposition measured by litterfall and throughfall fluxes.
- Tests are underway with enhanced Hg\(^0\) reactivity \((f_0)\) in the dry deposition scheme, which better agrees with measurements and recent studies (e.g. Obrist et al., *PNAS*, 2021; Fu et al, *ES&T*, 2021).
- Adjustments to Hg reduction rate will be needed to compensate for too low Hg\(^0\) concentration and wet deposition.
- Expected submission of paper: December 2021.

Observations extended from previous reviews: Wright et al., (2016); Zhou et al. (2020)